Well, if you have, you are in the right place. Everything you need to know about motherboards, from the components that make up the printed circuit board (PCB), to the integration of the input/output ports, card slots, and sockets, all the way up to the packaging and distribution of motherboards, will be covered in this article.
This process starts with the motherboards being placed into a machine that installs the small capacitors. After that, larger components, such as 24-pin connectors, and input/output ports, are mounted by hand.
How Motherboards Are Made
The ATX (Advanced Technology eXtended) connector (found in more recent motherboards) has 20 or 24-pin female connectors. This is the largest connector on the motherboard, as this draws out the needed power directly from the power supply.
An entry-level motherboard that has at least four chokes is considered ok, while mid to higher quality motherboards have at least six chokes. At the higher end, it is not uncommon to see more than eight chokes.
Chipsets dictate compatibility with various components, most notably the processor. In fact, chipsets only work within a specific processor family. For example, the new Ryzen 3000 chips will only be compatible with x470 and x570 motherboards.
Never get a motherboard with non-solid aluminum electrolytic capacitors, because these are often loaded with conducting liquid. Even if made correctly, motherboards that utilize cheap capacitors are highly susceptible to problems, such as leaks or ruptures.
A few other metals and plastics will make up the I-O interface, and depending on the motherboard in question, there may also be an RGB LED array commonly made using gallium arsenide or gallium phosphide.
Leading PC gaming brands are also known to have production bases in Ciudad Juarez, Mexico and Ostrava, Czech Republic, but motherboards are unlikely to be produced in these areas. These bases will probably specialize in other gaming products or specific motherboard components that are then shipped to China or Taiwan for assembly.
Intel used to produce their motherboards in the USA, but due to the Thorium Problem, American production of energy and tech has completely dropped out, and now relies on outsourcing to foreign countries.
America no longer has its own domestic rare earth supply chain required to produce things like motherboards, smartphones, batteries, etc, and even companies that source ore within the States, then ship it abroad for processing.
However, motherboards have a multilayer construction, which means they have more than two copper layers. This means that the above process has to be carried out several times. In the case of a six-layer motherboard, two of these cores will be needed to provide four of those layers. We'll see later how the other two layers are made.
Double-sided cores are now sandwiched together to start the creation of a multilayer PCB. Two cores are used for a six-layer board (a common figure for motherboards), but they can't be stacked directly on top of each other because this would cause the copper tracks on the top of the bottom core to short with the tracks on the bottom of the top core.
Since the motherboard is such an important component, it should come as no big surprise that manufacturing motherboards is such an intensive process. But how does chemical etching fit into the equation?
This graphic is set above a workstation where people manually test each listed component on the motherboards, ensuring everything works correctly before the motherboard is even boxed and shipped.
The part where all the ports are for your USB devices, mouse and keyboard, and general peripherals. Depending on your motherboard specs and onboard hardware, both the type and number of ports here can vary quite a bit.For example, some motherboards may have additional or newer USB ports, while others might feature antennae for Wi-Fi and Bluetooth.
They can come in either SATA M.2 or NVMe M.2 variations. Double-check what type of storage device your motherboard and CPU support before buying an M.2 drive. Most modern processors and motherboards should support NVMe, though.M.2 SATA ports are more common on budget and Mini ITX/laptop motherboards and very uncommon on mid to high-end boards.
How Motherboards Are Made: A Gigabyte Factory Tour Without a doubt, motherboards are the most complex and essential part of the modern PC. Not only do they hold the chipsets that pass data from peripherals, drives and memory to the processor, they also provide slots and ports for all your other system components and the circuits through which all data must pass. Perhaps surprisingly then, motherboards get very little respect in the computing press as compared to other components. They are perpetually the team player and not the star of the show, and are generally priced as such.
With this in mind, it's surprising to learn the amount of work and machinery involved in manufacturing a single motherboard. We'd vaguely imagined some sort of stamping process where all components are slapped onto the bare board in one step and soldered, before being boxed in a big room full of bored workers. Sure there would have to be some testing, but how intense could it be? As PCSTATS recent trip to Gigabyte's Nan-Ping factory in Taiwan showed us, there's a lot more to it. In fact, producing and testing a single motherboard involves a mind-boggling host of automated machines, people and processes; so we'd like to detail the whole assembly line we toured while covering Computex, to give you a feel for how things are really made. Gigabyte's Nan-Ping factory is a modern building in rural Taiwan. Built in 1986, this 8-story factory encompasses 45,000 square meters of work space, and includes 18 SMT lines, 10 DIP lines, and 9 Testing lines. The outside of Gigabyte's towering Nan-Ping factory
The most popular computers of the 1980s such as the Apple II and IBM PC had published schematic diagrams and other documentation which permitted rapid reverse-engineering and third-party replacement motherboards. Usually intended for building new computers compatible with the exemplars, many motherboards offered additional performance or other features and were used to upgrade the manufacturer's original equipment.
During the late 1980s and early 1990s, it became economical to move an increasing number of peripheral functions onto the motherboard. In the late 1980s, personal computer motherboards began to include single ICs (also called Super I/O chips) capable of supporting a set of low-speed peripherals: PS/2 keyboard and mouse, floppy disk drive, serial ports, and parallel ports. By the late 1990s, many personal computer motherboards included consumer-grade embedded audio, video, storage, and networking functions without the need for any expansion cards at all; higher-end systems for 3D gaming and computer graphics typically retained only the graphics card as a separate component. Business PCs, workstations, and servers were more likely to need expansion cards, either for more robust functions, or for higher speeds; those systems often had fewer embedded components.
Laptop and notebook computers that were developed in the 1990s integrated the most common peripherals. This even included motherboards with no upgradeable components, a trend that would continue as smaller systems were introduced after the turn of the century (like the tablet computer and the netbook). Memory, processors, network controllers, power source, and storage would be integrated into some systems.
Additionally, nearly all motherboards include logic and connectors to support commonly used input devices, such as USB for mouse devices and keyboards. Early personal computers such as the Apple II or IBM PC included only this minimal peripheral support on the motherboard. Occasionally video interface hardware was also integrated into the motherboard; for example, on the Apple II and rarely on IBM-compatible computers such as the IBM PC Jr. Additional peripherals such as disk controllers and serial ports were provided as expansion cards.
With the steadily declining costs and size of integrated circuits, it is now possible to include support for many peripherals on the motherboard. By combining many functions on one PCB, the physical size and total cost of the system may be reduced; highly integrated motherboards are thus especially popular in small form factor and budget computers.
Some motherboards have two or more PCI-E x16 slots, to allow more than 2 monitors without special hardware, or use a special graphics technology called SLI (for Nvidia) and Crossfire (for AMD). These allow 2 to 4 graphics cards to be linked together, to allow better performance in intensive graphical computing tasks, such as gaming, video editing, etc.
Motherboards are generally air cooled with heat sinks often mounted on larger chips in modern motherboards.[5] Insufficient or improper cooling can cause damage to the internal components of the computer, or cause it to crash. Passive cooling, or a single fan mounted on the power supply, was sufficient for many desktop computer CPU's until the late 1990s; since then, most have required CPU fans mounted on heat sinks, due to rising clock speeds and power consumption. Most motherboards have connectors for additional computer fans and integrated temperature sensors to detect motherboard and CPU temperatures and controllable fan connectors which the BIOS or operating system can use to regulate fan speed.[6] Alternatively computers can use a water cooling system instead of many fans.
A 2003 study found that some spurious computer crashes and general reliability issues, ranging from screen image distortions to I/O read/write errors, can be attributed not to software or peripheral hardware but to aging capacitors on PC motherboards.[7] Ultimately this was shown to be the result of a faulty electrolyte formulation,[8] an issue termed capacitor plague. 2ff7e9595c
Comments